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Abstract. Graphs and networks are used to model interactions in a variety of contexts. There is
a growing need to quickly assess the characteristics of a graph in order to understand its underlying
structure. Some of the most useful metrics are triangle-based and give a measure of the connected-
ness of mutual friends. This is often summarized in terms of clustering coefficients, which measure
the likelihood that two neighbors of a node are themselves connected. Computing these measures
exactly for large-scale networks is prohibitively expensive in both memory and time. However, a
recent wedge sampling algorithm has proved successful in efficiently and accurately estimating clus-
tering coefficients. In this paper, we describe how to implement this approach in MapReduce to
deal with extremely massive graphs. We show results on publicly-available networks, the largest of
which is 132M nodes and 4.7B edges, as well as artificially generated networks (using the Graph500
benchmark), the largest of which has 240M nodes and 8.5B edges. We can estimate the clustering
coefficient by degree bin (e.g., we use exponential binning) and the number of triangles per bin, as
well as the global clustering coefficient and total number of triangles, in an average of 0.33 sec. per
million edges plus overhead (approximately 225 sec. total for our configuration). The technique can
also be used to study triangle statistics such as the ratio of the highest and lowest degree, and we
highlight differences between social and non-social networks. To the best of our knowledge, these are
the largest triangle-based graph computations published to date.

Keywords: triangle counting, clustering coefficient, triangle characteristics, large-
scale networks, MapReduce

1. Introduction. Over the last decade, graphs have emerged as the standard
for modeling interactions between entities in a wide variety of applications. Graphs
are used to model infrastructure networks, the world wide web, computer traffic,
molecular interactions, ecological systems, epidemics, co-authors, citations, and social
interactions, among others. Understanding the frequency of small subgraphs has been
an important aspect of graph analysis.

Despite the differences in the motivating applications, some topological structures
have emerged to be important across all these domains. The most important such
subgraph is the triangle (3-clique). Many networks, especially social networks, are
known to have many triangles. This is thought to be because social interactions exhibit
homophily (people befriend similar people) and transitivity (friends of friends become
friends). The notion of clustering coefficient is inspired by this observation, and is the
standard method of summarizing triangle counts [50, 34]. It is well known that some
networks, especially social networks, have much higher clustering coefficients than
random networks [32, 33, 35]. Triangle measures are important for understanding
network structure and evolution [21, 39, 18, 49] and reproducing the degree-wise
clustering coefficients of a network is important for generative models [19, 39, 41].

1.1. Our Contributions. For large graphs, computing triangle-based measures
can be extremely expensive. The standard approach is to find all wedges, i.e., paths
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of length 2, and check to see if they are closed, i.e., the edge that complete the
triangle exists. Previous work presents a wedge-sampling approach for approximating
clustering coefficients [40, 43]; this is in contrast to sampling single edges, which is a
more obvious but less reliable technique. In [43], it is shown that the wedge-sampling
approach is orders of magnitude faster than enumeration and is both faster and has
less variance than edge-sampling techniques.

In this paper, we show that the wedge-sampling approach scales to very large
networks. Specifically, we make the following contributions:
• We present a parallelization of our wedge-based sampling algorithm in the

MapReduce framework. The basic premise of wedge sampling is to set up a dis-
tribution on the vertices (as potential wedge centers) and use that to sample the
actual wedges. Designing a serial algorithm is fairly straightforward, since the infor-
mation to compute the distributions and then actually form the wedges is all local.
In the MapReduce implementation, the edges are distributed arbitrarily; therefore, it
takes several passes through the data to compute the necessary distribution, actually
create the sample wedges, and finally check if they are closed.
• An advantage of the MapReduce approach is that we can compute multiple

clustering coefficients for the same graph (e.g., binned by degree) for essentially the
same cost as computing the single global clustering coefficient. Since the clustering
coefficient generally varies with degree, it is helpful to see the profile versus a single
value. Such profiles are useful in graph characterization and modeling.
• We give extensive numerical results, on both real-world networks from the Lab-

oratory for Web Algorithms as well as artificial large-scale networks created according
to the Graph500 benchmark. We have multiple examples with more than a billion
edges. To the best of our knowledge, these are the largest triangle computations to
date.
• These results demonstrate the efficient of our algorithm, and the costs are quite

reasonable. For instance, we estimate the cost of computing clustering coefficients
per (logarithmically) binned degree to be an average of 0.33 sec. per million edges
plus overhead, which is approximately 225 sec. total for our 32-node Hadoop cluster.
Hence, a graph with over 9B edges requires less than one hour of computation. Note
that global clustering coefficient and total triangles are also computed.
• A straightforward implementation requires that the entire edge list be “shuf-

fled” three times. We show how to greatly reduce the shuffle volume with some
clever implementation strategies that are able to filter the edge list during the “map”
phase. We discuss the implementation details and show numerical comparisons of
performance.
• A feature of wedge-based sampling is that the closed wedges are uniform random

triangles. Hence, we also give experimental results characterizing triangles in terms
of the their minimum and maximum degrees. Triangles from social networks tend to
be somewhat assortative whereas triangles from other types of networks are not.

1.2. Related Work: Other Work on Triangle Counting. The enumera-
tion algorithms for finding triangles are either node- or edge-centric. Node-centric
algorithms iterate over all nodes and, for each node v, checks all pairs among the
neighbors of v for being connected. Edge-centric algorithms, on the other hand, go
over all edges (u, v) and seeks common neighbors of u and v. Chiba and Nishizeki [11]
proposed a node-centric algorithm that orders the vertices by degree and processes
each edge only once, by its lower-degree vertex. They showed that this algorithm runs
in O(mα(G))-time, where m is the number of edges, and α(G) is the arboricity of the
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graph G (arboricity is defined as the minimum number of forests into which its edges
can be partitioned and can be considered as a measure of how dense the graph is).
Schank and Wagner [40] used the same idea for their forward algorithm. Cohen [14]
and Suri and Vassilvitskii [44] independently proposed MapReduce algorithms based
on the same idea. Chu and Cheng studied an I/O efficient implementation of the
same algorithm [13]. Latapy proved that the forward algorithm runs in O(m3/2)-time
and proposed improvements that reduce the search space [26]. Latapy also showed
that the runtime of this algorithm becomes O(mn1/α) for graphs with power-law
degree distributions, where α is the power-law coefficient and n is the number of ver-
tices [26]. Arifuzzaman et al. [2] give a massively parallel algorithm for computing
clustering coefficients.

Enumeration algorithms however, can be very expensive, due to the extremely
large number of triangles (see e.g., Tab. 5.1), even for graphs even of moderate size
(millions of vertices). Eigenvalue/trace based methods adopted by Tsourakakis [47]
and Avron [3] compute estimates of the total and per-degree number of triangles.
However, the compute-intensive nature of eigenvalue computations (even just a few
of the largest magnitude) makes these methods intractable on large graphs.

Most relevant to our work are sampling mechanisms. Tsourakakis et al. [45] ini-
tiated the sparsification methods, the most important of which is Doulion [48]. This
method sparsifies the graph by retaining each edge with probability p; counts the tri-
angles in the sparsified graph; and multiplies this count by p−3 to predict the number
of triangles in the original graph. Theoretical analyses of this algorithm (and its vari-
ants) have been the subject of various studies [24, 46, 36]. One of the main benefits
of Doulion is its ability to reduce large graphs to smaller ones that can be loaded into
memory. However, the estimates can suffer from high variance [52]. Alternative sam-
pling mechanisms have been proposed for streaming and semi-streaming algorithms
[4, 22, 5, 10].

Earlier work by a subset of the current authors shows that the wedge-sampling
approach featured here provides the same accuracy and speed advantages of other
sampling-based methods (like Doulion) but has a hard bound on the variance [43].
Moreover, the wedge-based approach is much more flexible and can compute a variety
of triangle-based metrics including degree-wise clustering coefficients and uniform
randomly sampled triangles.

1.3. Related Work: MapReduce for Graph Analytics. MapReduce [15]
is a conceptual programming model for processing massive data sets. The most pop-
ular implementation is the open-source Apache Hadoop [1] along with the Apache
Hadoop Distributed File System (HDFS) [1], which we have used in our experiments.
MapReduce assumes that the data is distributed across storage in roughly equal-sized
blocks. The MapReduce paradigm divides a parallel program into two parts: a map
step and a reduce step. During the map step, each block of data is assigned to a
mapper which processes the data block to emit key-value pairs. The mappers run in
parallel and are ideally local to the block of data being processed, minimizing com-
munication overhead. In between the map and reduce steps, a parallel shuffle takes
place in order to group all values for each key together. This step is hidden from the
user and is extremely efficient. For every key, its values are grouped together and sent
to a reducer, which processes the values for a single key and writes the result to file.
All keys are processed in parallel.

MapReduce has been used for network and graph analysis in a variety of contexts.
It is a natural choice for processing, if for no other reason than the fact that it is widely
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deployed [29]. Pegasus [23] is a general library for large-scale graph processing; the
largest graph they considered was 1.4M vertices and 6.6M edges and the PageRank
analytic, but they did not report execution times. Lin and Schatz [31] propose some
special techniques for graph algorithms such as PageRank that have matrix-vector
products. MapReduce sampling-based techniques that reduce the overall graph size
are discussed by Lattanzi et al. [27].

In terms of triangle counting and computer clustering coefficients, Cohen [14]
considers several different analytics including triangle and rectangle enumeration.
Plantenga [38] has studied subgraph isomorphism (i.e., finding small graph patterns
such as triangles), including Cohen’s algorithm as a special case. (We use Plantenga’s
implementation of Cohen’s Triangle enumeration algorithm for comparison in our sub-
sequent numerical results.) For a non-triangle pattern, Plantenga’s SGI code ran on a
7.6B vertex graph with 107B undirected edges in 620m on a 64-node Hadoop cluster.
Wu et al. [51] have also studied triangle enumeration using MapReduce with running
times of roughly 175 seconds on a graph with 1.6M nodes and 5.7M edges. Suri and
Vassilvitskii [44] proposed a MapReduce implementation for exact per-node cluster-
ing coefficients. Most naive partitioning schemes do not give efficient parallelization
because of high-degree vertices, and their result involves new partitioning methods to
avoid this problem. They run on the same Twitter data set that we use in §5 and
report a computation time of 483m. SAHAD [54] has a Hadoop program that uses
sampling techniques based on graph coloring to find subgraphs, but is limited to tree
patterns.

2. Background.

2.1. Global Clustering Coefficient. Let G = (V,E) be an undirected graph
with n = |V | nodes and m = |E| undirected edges. Without loss of generality, we
assume the vertices are indexed by i = 1, . . . , n. Let di denote the degree of vertex i.
A wedge is a length-2 path. Let pi denote the number of wedges centered at vertex i.
It can easily be shown that pi is given by

pi =

(
di
2

)
=
di(di − 1)

2
.

A wedge is closed if its endpoints are connected and open otherwise. The center of
a wedge is the middle vertex. A triangle is a cycle with three vertices. A closed
wedge forms a triangle; conversely, a triangle corresponds to three closed wedges. Let
ti denote the number of triangles containing node i, which is equal to the number of
closed wedges centered at node i. The node-level clustering coefficient (first used in
[50]) is

ci =
ti
pi

=
number of triangles incident to node i

number of wedges centered at node i
.

Thus, ci measures how tightly the neighbors of a vertex are connected amongst them-
selves.

We define W to be the set of all wedges in G and p to be the total number of
wedges, i.e., p = |W | =

∑
i pi. We partition W into two disjoint subsets as follows:

W0 = { w ∈W | w open } ,
W3 = { w ∈W | w closed } .
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2

3

4

5

6
n = 6, m = 7, {di} = {2, 2, 3, 4, 2, 1}
p = 12, {pi} = {1, 1, 3, 6, 1, 0}
t = 1, {ti} = {0, 0, 1, 1, 1, 0}
c = 0.25, {ci} = {0, 0, 1/3, 1/6, 1, 0}
{nd} = {1, 3, 1, 1}, {pd} = {0, 3, 3, 6}

{td} = {0, 1, 1, 1}, {cd} = {0, 1/3, 1/3, 1/6}

Fig. 2.1: Example graph with various quantities highlighted.

The subscript of 3 for the closed wedges indicates that each triangle creates 3 wedges in
W3. Let t = 1

3

∑
i ti = 1

3 |W3| denote the total number of triangles (since each triangle
is counted thrice). The (global) clustering coefficient (also known as the transitivity)
[34] of an undirected graph is given by

c =
|W3|
|W |

=

∑
ti∑
pi

=
3t

p
=

3× total number of triangles

total number of wedges
. (2.1)

At the global level, c is an indicator of how tightly the nodes of the graph are connected
and any community structure.

2.2. Binned Degree-wise Clustering Coefficient. In this paper, we will
be using the binned degree-wise clustering coefficients, which measure how tightly
the neighborhood of vertices of a specified degree group are connected. Let D ⊆
{ di, dj , . . . } be a subset of degrees (we ignore degree-zero nodes). We define VD =
{ i ∈ V | di ∈ D } and nD = |VD|. In many cases, we are interested in a single degree,
i.e., if D = { d } then Vd is the set of nodes of degree d and nd is the number of nodes
of degree d.

We define WD to be the set of all wedges centered at a node in VD and pD to be
the total number of wedges centered at nodes in VD, i.e., pD = |WD|. If D = { d },
then pd = nd

(
d
2

)
. We partition the set WD into four disjoint subsets as follows:

WD,0 = { w ∈WD | w open } ,
WD,q = { w ∈WD | w closed and has q nodes in VD } for q = 1, 2, 3.

Define pD,q = |WD,q| for q = 0, 1, 2, 3. Clearly, pD =
∑
q pD,q. Then we can define

the binned degree-wise clustering coefficient, cD, as the fraction of closed wedges in
WD; i.e.,

cD = (pD,1 + pD,2 + pD,3)/p. (2.2)

The formula for triangles is more complex and given by

tD = pD,1 +
1

2
· pD,2 +

1

3
· pD,3,

since for each triangle there is either one wedge in WD,1, two wedges in WD,2 or three
wedges in WD,3. Fig. 2.1 shows examples of these quantities when the bins are all
singletons: { 1 } , { 2 } , { 3 } , { 4 }.

3. Wedge Sampling for Triadic Measures. For a more detailed exposition
of wedge sampling and empirical tests of its behavior, we refer the reader to [43]. For
completeness, we review the concepts and calculations here.



6 T. G. Kolda, A. Pinar, T. Plantenga, C. Seshadhri, and C. Task

0 0.02 0.04 0.06 0.08 0.1
10

2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Error (ε)

N
um

be
r 

of
 S

am
pl

es

 

 

380 (ε=10−1)

38005 (ε=10−2)

3800451 (ε=10−3)

90.0% Confidence
99.0% Confidence
99.9% Confidence

Fig. 3.1: The number of samples needed for different error rates and different levels of
confidence. A few data points at 99.9% confidence are highlighted. [43]

3.1. Hoeffding’s Inequality. We begin by stating the classic Chernoff-Hoeffding
concentration inequality for the sum of independent random variables. It will be con-
venient to use the additive tail bound given by Hoeffding.

Theorem 3.1 (Hoeffding [20]). Let X1, X2, . . . , Xk be independent random vari-

ables with 0 ≤ Xi ≤ 1 for all i = 1, . . . , k. Define X̄ = 1
k

∑k
i=1Xi. Let µ = E[X̄].

Then for any ε > 0, we have

Prob {|X − µ| ≥ ε} ≤ 2 exp(−2t2/k).

We use this more convenient corollary.
Corollary 3.2. Let X1, X2, . . . , Xk be independent random variables with 0 ≤

Xi ≤ 1 for all i = 1, . . . , k. Define X̄ = 1
k

∑k
i=1Xi. Let µ = E[X̄]. For any positive

ε, δ, setting k = d0.5ε−2 ln(2/δ)e yields

Prob
{
|X̄ − µ| ≥ ε

}
≤ δ.

We say that ε is the error and (1 − δ) is the confidence. Fig. 3.1 shows the
number of samples needed for different error rates. We show three different curves
for different confidence levels. Increasing the confidence has minimal impact on the
number of samples. The number of samples is fairly low for error rates of 0.1 or 0.01,
but it increases with the inverse square of the desired error. Nonetheless, we shall
see that the three million samples required for an error rate of ε = 0.001 at 99.9%
confidence is tiny from a MapReduce perspective.

3.2. Global Clustering Coefficient and Triangles. The clustering coefficient
c is the fraction of closed wedges. This can be interpreted as the probability that an
uniform random wedge is closed. Hence, we may apply Hoeffding’s inequality to
obtain the following result.

Theorem 3.3 (Clustering Coefficient [43]). For ε, δ > 0, set k = d0.5 ε−2 ln(2/δ)e.
For i = 1, . . . , k, choose wedge wi uniformly at random (with replacement) from W
and let Xi be defined as

Xi =

{
1, if wi is closed,

0, otherwise.
(3.1)
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Then,

Prob {|ĉ− c| ≥ ε} ≤ δ for ĉ =
1

k

k∑
i=1

Xi.

Proof. Since c is the proportion of wedges that are closed, E[X̂] = c. The proof
follows directly from Cor. 3.2.

From Thm. 3.3, we know exactly how many wedges we need to sample (k) to ob-
tain a desired error (ε) and confidence (1−δ). Define Ŵ to be a set of k independently
sampled wedges from W (with replacement). Then

ĉ =
1

k

k∑
i=1

Xi =
| {w ∈ Ŵ | w closed } |

|Ŵ |
=

# closed sampled wedges

# sampled wedges
.

From the clustering coefficient, we can infer the number of triangles, per the
following corollary.

Corollary 3.4 (Counting Triangles [43]). Let the conditions of Thm. 3.3 hold.
Then

Prob
{
|t̂− t| ≥ ε · p/3

}
≤ δ for t̂ = ĉ · p/3.

Proof. Since t = c · p/3 per (2.1), our result follows directly from Thm. 3.3.
Note that the expected error in the number of triangles is as a proportion of p/3

(one-third the total number of wedges) rather than a proportion of t. Hence, if t is
very small compared to p, the relative error |t̂− t|/t may still be large.

Choosing Uniform Random Wedges. There is a challenge here in terms of picking
random wedges. We do not want to form all wedges explicitly. Instead, we implicitly
generate random wedges. Observe that the number of wedges centered at vertex i is
exactly

(
di
2

)
, and p =

∑
i

(
di
2

)
. That leads to the following procedure. First, choose a

random vertex i with probability
(
di
2

)
/p. Second, choose two of vertex i’s neighbors

(without replacement) to form a random wedge. To set up this distribution, we need
to compute the degree distribution.

3.3. Binned Degree-wise Clustering Coefficients and Triangles. The strat-
egy for computing the clustering coefficient per degree (or degree range) is nearly
identical to the above.

Theorem 3.5 (Binned Degree-wise Clustering Coefficient [43]). For ε, δ > 0, set
k = d0.5 ε−2 ln(2/δ)e. For i = 1, . . . , k, choose wedge wi uniformly at random (with
replacement) from WD and let Xi be defined as in (3.1). Then

Prob {|ĉD − cD| ≥ ε} ≤ δ for ĉD =
1

k

k∑
i=1

Xi.

Proof. Observe that cD = E[X̄] since it is the probability that a random wedge
in WD is closed. The proof follows immediately from Cor. 3.2.

To select a random wedge, recall that pD = |WD|, so we want to choose vertex
i ∈ VD with probability

(
di
2

)
/pD. If D = { d } (a singleton), then all nodes in Vd are

equally probable.
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The estimate for the number of triangles is slightly more complicated since each
closed wedge may have 1,2, or 3 vertices in VD.

Theorem 3.6 (Degree-wise Triangle Count [43]). Let the conditions of Thm. 3.5
hold. For each wi, let Yi be defined as

Yi =


1, if w ∈WD,1,
1
2 , if w ∈WD,2,
1
3 , if w ∈WD,3,

0, if w ∈WD,0 (open) .

Then

Prob
{
|t̂D − tD| ≥ ε · pD

}
≤ δ for t̂ = pD ·

1

k

k∑
i=1

Yi.

Proof. We claim E[Y ] = tD. Suppose that w is selected from WD uniformly at
random. Observe that

E[Y ] = Prob {w ∈WD,1}+
Prob {w ∈WD,2}

2
+

Prob {w ∈WD,3}
3

= 1 · pD,1
pD

+
1

2
· pD,2
pD

+
1

3
· pD,3
pD

= tD/pD,

per (2.2). Hence, from Cor. 3.2 we have

Prob
{
|t̂D/pD − tD/pD| ≥ ε

}
≤ δ,

and the theorem follows by multiplying the inequality by pD.

3.4. Computing a Random Sample of the Triangles. In addition to know-
ing the number of triangles in a graph, it may also be interesting to consider the
properties of those triangles. For instance, Durak et al. [17] consider the differences
in node degrees in a triangle.

It turns out that the closed wedges discovered during the wedge sampling proce-
dure are triangles sampled uniformly (with replacements). Hence, we can study these
randomly sampled triangles to estimate the overall characteristics of triangles in the
graph.

Theorem 3.7. Let Ws be a random sample of the wedges of a graph G, and let
Ts ⊆Ws triangles that are formed by the closed wedges in WS. Then each triangle in
Ts is a uniform random sample from the triangles of G.

Proof. The proof depends on observing that a triangle being chosen depends only
on one of its 3 wedges being chosen. Since the wedge sample is uniformly random,
each triangle is equally likely to be picked, and there is no dependency between any
pair of triangles, which implies a uniform sample.

3.5. Practical Performance of Wedge Sampling. Earlier work by a subset
of the authors [43] provides a thorough study on how the techniques described above
perform in practice. As expected, tremendous improvements are achieved in runtimes
compared to full enumeration, especially for large graphs, since the number of samples
is independent of graph size. Specifically, we see speed-ups of more than 1000X with
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errors in the clustering coefficient of less than 0.002. Additionally, in comparison to
the Doulian method (an edge-sampling technique) we obtain speed-ups of 5X or more
while obtaining the same accuracy. The ability to adapt our wedge-sampling method
to computing binned degree-wise clustering coefficients and triangle sampling are also
benefits in comparison to edge-based sampling.

Our goal in this work is to implement the wedge sampling approach within the
MapReduce framework and provide evidence that it can scale to much larger problems.

4. MapReduce Implementation.

4.1. Overview. We now present a MapReduce algorithm for estimating the
clustering coefficients and number of triangles in a graph. For details on MapRe-
duce, we refer the reader to Lin and Dyer [30]; we have emulated their style in our
algorithm presentations. We use the popular, open-source Hadoop implementation
of MapReduce, and the Hadoop Distributed File System (HDFS) for storing data.
Each MapReduce job takes one or more distributed files as input. These files are
automatically stored as splits (also known sometimes as blocks), and one mapper is
launched per split. The mappers produce key-value pairs. All values with the same
key are sent to the same reducer. The number of reducers is specified by the user.
Each MapReduce job produces a single HDFS output file. A MapReduce job accepts
configuration parameters, which are passed along as data to the mapper and reducer
functions; we discuss these in more detail in the sections that follow. The set of
MapReduce jobs in our algorithm is coordinated by a Hadoop Java program running
on a single client node.

In our code, we assume the nodes are binned by degree as discussed in §4.2. Com-
putation of the global clustering coefficient is a special case which can be computed by
either looking only at a single bin containing all degrees or using a weighted average
of the binned clustering coefficients (see §4.6.2).

Our input is an undirected edge list where the node identifiers are 64-bit integers;
we assume no duplicates or self-edges and no particular ordering. We divide our
MapReduce algorithm into three major phases plus post-processing, as presented in
Fig. 4.1. Each major phase makes a complete pass through the edge list. The goal of
the first phase is to set up the distribution on wedges. The goal of the second phase is
to actually create the sample wedges. Finally, the goal of the third phase is to check
whether or not the sample wedges are closed. In all three phases, we have strategies to
reduce the data volume in the shuffle phase (between the map and reduce), discussed
in detail in the sections that follow.

4.2. Binning. We define degree bins in a parameterized way as follows. Let
τ be the number of singleton bins, and let ω > 1 be the rate of growth on the bin
sizes. The first τ bins are singletons containing degrees 1, 2, · · · , τ respectively. The
remaining bins grow exponentially in size.

We describe the lowest degree of bin k as

BinLoDeg(k) =

{
k, if k ≤ τ,
d(ω(k−τ) − 1)/(ω − 1)e+ τ, otherwise.

(4.1)

The highest degree for bin k is just one less than the lowest degree of bin k + 1. For
a given degree d, we can easily look up its bin as

BinId(d) =

{
d, if d ≤ τ,
blog(1 + (ω − 1)(d− τ))/ log(ω)c+ τ, otherwise.

(4.2)
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Fig. 4.1: Algorithm overview for estimating clustering coefficients and counting triangles,
both binned by degree. Red boxes indicate a MapReduce job, while green represents a serial
operation on the client node. Blue boxes indicate data files. The edge list is provided by the
user; all other data files are produced by the method. Orange boxes indicate data that is
passed as a “configuration parameter” to all mappers. Solid lines indicate consumption of
data. Dotted lines indicate creation of data. Note that there are three phases (1a, 2c, and
3b) that read all edges, which is the most expensive operation. Italicized text indicates an
optional (sub-)phase.

In our implementation, τ and ω are communicated to each MapReduce job as config-
uration parameters.

For τ = 2 and ω = 2, the bins are { 1 }, { 2 }, { 3, 4 }, { 5, 6, 7, 8 }, { 9, . . . , 16 },
{ 17, . . . , 32 }, and so on. Note that the bin { 1 } cannot have any wedges, so we just
ignore it. Let d̄ be an upper bound on the highest degree for a given graph. Then
choosing τ = 1 and ω = d̄ yields bins { 1 } , { 2, . . . , d̄ }. In other words, we have a
single bin containing all vertices (excepting degree-1 vertices). On the other hand,
choosing τ = d̄ yields { 1 } , { 2 } , . . . , { d̄ }. Here, every bin is a singleton.

We are not constrained to equation (4.2) for computing the bins; we can use any
procedure such that each degree is assigned to a single bin. Likewise, (4.1) is optional
and used to reduce the shuffle volume in Phase 2c.

4.3. Phase 1: Compute Degree-based Statistics.

4.3.1. Phase 1a: Compute Degree per Vertex. Phase 1a is a straightfor-
ward MapReduce task—computing the degree of each vertex. The Map and Reduce
functions are described in Alg. 1. The input is the edge list file; each entry is a pair
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Algorithm 1 Compute Degree per Vertex (Phase 1a)

method Map(v, w) . Input is edge list file
Emit(v, 1)
Emit(w, 1) . Emit both for an undirected graph

method Reduce(v, {x1, x2, . . . })
d← Sum({x1, x2, . . . }) . Compute degree
Emit(v, d) . Output is vertex degree file

Algorithm 2 Compute Number of Wedges per Bin (Phase 1b)

parameters: τ, ω . Binning parameters

method Map(v, d) . Input is vertex degree file
b← BinId(d, τ, ω) . Compute bin ID
n← 1 . Number of vertices
p← d · (d− 1)/2 . Number of wedges
Emit(b, (n, p))

method Reduce(b, { (n1, p1), (n2, p2), . . . }) . One reduce function per bin
n← Sum({n1, n2, . . . }) . Number of vertices in bin
p← Sum({ p1, p2, . . . }) . Number of wedges in bin
Emit(b, n, p) . Output is wedges per bin file

of vertex IDs (v, w) that define an edge. The Map function is called for each edge
(v, w) and emits two key-value pairs keyed to the vertex IDs and having a value of
1. The Reduce function gathers all the values for each vertex and sums them to
determine the degree. The final output to HDFS is a vertex degree file; each entry
is of the form (v, d) where v is a vertex ID and d is its degree.

Alg. 1 shows a simple version of the code. To make the code more efficient, we
collect local counts within each mapper (using a Java Map container) and emit the
totals. This technique is called an in-memory combiner [31]. We found the in-memory
combiner to reduce shuffle volume more than employing the reducer as a combiner.

4.3.2. Phase 1b: Compute Number of Wedges per Bin. Phase 1b works
with the output of Phase 1a (vertex degree file) to compute the number of wedges
per bin. The Map and Reduce functions for Phase 1b are presented in Alg. 2. The
input is the list of degrees per vertex. The Map function is called for each vertex
(with its associated degree) and emits the number of wedges for that vertex, keyed
to the appropriate bin. The Reduce function simply combines the results for each
bin. The final output is a wedges per bin file; each entry is of the form (b, nb, pb)
where b is the bin ID, nb is the number of vertices in the bin, and pb is the number of
wedges in the bin.

Once again, we have shown a simple version of the algorithm in Alg. 2. To make
the code more efficient, we collect local counts within each mapper (using a Java Map

container) and emit the totals.

For the case of a single bin, strictly speaking, Phase 1b is unnecessary. Instead,
we could have used a Hadoop global counter to tally the total wedges in the reduce
step of Phase 1a.
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Algorithm 3 Determine number of samples per vertex (Phase 2a)

parameter: k . Desired number of samples per bin
parameter: θ . Represents wedges per bin object

method Map(v, d) . Input is vertex degree file
b← BinId(d) . Compute bin ID
p← θ(b) . Total number of wedges in bin containing v
q∗ ← (d · (d− 1)/2) · k/p . Ideal number of samples, likely noninteger
x← rand ([0, 1]) . Uniform random number in [0, 1]
q ← {x ≥ (q∗ − bq∗c) } ? dq∗e : bq∗c . Number of sample wedges centered at v
if q ≥ 1 then . Skip vertices with no samples

Emit(v, d, q, p) . Output is wedge centers file
end if

4.3.3. Phase 1c: Gather Wedges per Bin. From the wedges per bin file
(output of Phase 1b), we create a wedges per bin object, which acts as a function θ
such that θ(b) is the number of wedges in bin b. The work is performed entirely in our
main program running on the client node. It reads Phase 1b output from HDFS, stores
wedges per bin values in a Java Map container, and launches the next MapReduce job
(Phase 2a), sending the serialized container as a configuration parameter.

4.4. Phase 2: Select Wedge Samples.

4.4.1. Phase 2a: Select Sample Wedge Centers. The input to Phase 2a is
the vertex degree file along with the wedges per bin object, which is passed as a
configuration parameter. Phase 2a calculates the number of sample wedges centered
at each vertex. The Map function is shown in Alg. 3. The Map function is called
for each (vertex ID, degree) pair. From this, we can calculate the expected number
of wedges that would be sampled from the vertex for a uniform random sample, q∗.
This number is unlikely to be integral. Rounding up would produce far too many
wedges. Instead, we use probabilistic rounding. For instance, if q∗ = 0.1, then there
is a 10% change of producing q = 1 wedges and a 90% chance of producing no wedges,
q = 0. We are only off by at most one, so if q∗ = 1.1, then there is a 10% change
of producing q = 2 wedges and a 90% chance of producing q = 1 wedge. Hence,
the expected number of wedges for this vertex is exactly q∗. Only vertices with at
least one sample wedge are emitted. The final output is a wedge centers file; each
entry is of the form (v, d, q, p) where v is the vertex ID, d is the vertex degree, q is
the number of sample wedges centered at that vertex, and p is the total number of
wedges in the bin containing v. The Reduce function is just the identity map and is
not shown.

4.4.2. Phase 2b: Gather Sample Wedge Centers. Phase 2b is an optional
step that generates a Java Map of wedge centers and their bin IDs based on the output
of Phase 2a (wedge centers file). We represent this object as a function γ such that

γ(v) =


0 if Phase 2b is skipped,

1 if v is not a wedge center,

b ≥ 2 if v is a wedge center, in which case b is the bin ID.

This wedge centers object has one value for every vertex appearing in a wedge
center. It is serialized and passed as a configuration parameter to Phase 2c, where it
is used to filter the edges that are emitted by the Map function.
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Note that Hadoop imposes a limit on the size of the configuration parameters
(5MB by default). If the number of wedge centers is too large (a few hundred thousand
samples will exceed 5MB), then other options must be explored. One alternative is
to pass the container to the Map tasks using the Hadoop distributed cache; however,
we have not implemented this idea.

Phase 2b is optional, and can be skipped if there are too many wedge centers.
We demonstrate the benefits of this step in §5.

4.4.3. Phase 2c: Create Sample Wedges. In Phase 2c, the goal is to take
each sample wedge center (from the wedge center file), collect its neighbors (from
the edge list file), and create a set of sample wedges. We merge each vertex and
its neighbors at the reduce phase. If it exists, the optional wedge center object
is used to filter the edges that are shuffled, ignoring all edges that are not adjacent
to a sampled wedge center. The algorithm is shown in Alg. 4. For clarity, we give a
separate Map function for each input type. In the actual implementation, we have
to determine the input type on the fly, because both input files are of Hadoop type
Text. For input from the wedge centers file, the Map function simply passes along
its degree and sample wedge count (i.e., the number of wedges to be sampled from
the vertex).

For input from the edge list file, the Map function checks to see if the edge is
adjacent to a wedge center. If so, it is passed based on the outcome of a random coin
flip. The aim of the Reduce phase is to generate random wedges centered at a vertex
(say v). The most näıve Map implementation would forward all edges incident to v,
so that wedges can be selected from them. A major problem with this is that if the
number of samples k is much less than the degree of v, most of the communication is
unnecessary. For example, the highest degree vertices of a social network graph might
link to millions of edges, but k is in the tens of thousands or less; therefore, most of
the incident edges will not participate in sampled wedges centered at these vertices.
We have a probabilistic fix to address this situation.

We do not have the vertex degree readily available, but we do know its bin and
therefore a lower bound on its degree. Consider a vertex v of degree greater than
dmin, where 2k ≤ dmin/2. We send just some of the incident edges to v, with inde-
pendent probability φ = 4k/dmin ≤ 1. Then the expected number of edges to send
is 4k(dv/dmin). Note that this expectation is at least 4k. Getting less than 2k edges
is potentially disastrous, but the probability of this is minuscule. By a multiplicative
Chernoff bound (given below), the probability of such an event is exp(−k/8). For
k = 1000 (a tiny sample size), the probability is less than 10−55.

Theorem 4.1 (Multiplicative Chernoff Bound [16]). Let X =
∑
i≤rXi, where

each Xi is independently distributed in [0, 1]. Then

Prob {X ≤ (1− δ)E[X]} ≤ exp(−δ2E[X]/2).

If dv is not too far from dmin, then the expectation 4k(dv/dmin) is potentially much
smaller than dv. Hence, we get the desired number of random edges without sending
too many.

Even with this improvement, the data passed forward may be too large to fit into
the reducer’s memory. We use a feature of Hadoop called secondary sort to ensure
that the data arrives pre-sorted. Note that the key used for passing along the vertex
information is v:0 and the key for the edges is of the form v:y, where y is a random
positive integer. This data is all mapped to the key v, but the values following the
colon control the sort of the values associated with v. The secondary key of zero
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ensures that the degree and wedge count data are first. The secondary keys for edges
(y) ensure that the adjacent edges are randomly sorted; otherwise, Hadoop would
present the edges in their order of arrival, which could bias the selection.

From the secondary sort, the wedge center must be first in the values list at the
reduce phase, if it exists. If it does not exist, then there is nothing to do. Recall
that for each wedge center v, we have its degree, d, and a desired number of wedge
samples, q. Each wedge must be randomly sampled with replacement. The two edges
of a single wedge are sampled without replacement. So, wedge sampling requires a
minimum of 2 and a maximum of 2q edges. If 2q > d, some edges are necessarily
reused. On the other hand, if 2q � d, then we expect every wedge centered at v
to have two unique edges. For large d, we want to avoid reading all neighbors since
the list is quite long. We do this by using a simulated sampling procedure explained
below. It only requires us to read first d′ neighbors where d′ ≤ min { d, 2q }.

We need to produce q uniform random wedges (with replacement) centered at
v. This is done through the procedure Sampling. Imagine the edges incident to
v numbered arbitrarily from 1 to d. A uniform random wedge is represented as a
uniform random pair of indices (i, j) (i 6= j, i ≤ d, j ≤ d). We can repeat this q times
to implicitly sample q random wedges, each of which is just represented as a pair of
indices. Observe that the total number of indices in the union of these pairs is at
most d′, so all we need are the d′ uniform random edges obtained as the output of the
Map phase. We map these indices randomly to the index set {1, 2, . . . , d′} through a
permutation. Now, each wedge is indexed as a pair (i, j) (i 6= j, i ≤ d′, j ≤ d′). From
the list of edges/neighbors {x1, x2, . . . , xd′}, we can generate these random edges.
This is what is done in Sampling and Reduce in Alg. 4.

The final output of this phase is a sample wedge list file, where each entry is
of the form (h, v0, v1, v2, p, d0). The number h is a hash of the desired closure edge
(v1, v2) that is used for load balancing, the wedge is defined by (v1, v0, v2), p is the
total number of wedges in the bin containing v0, and d0 is the degree of vertex v0.

As mentioned above, Phase 2b is optional. If skipped, then we let the MapReduce
shuffle bring adjacent edges of a wedge center together in the reduce phase. We defer
calculation of the number of sample wedges to the reduce phase, but otherwise proceed
as defined above. Note that in many cases the reducer collects zero samples and does
no work.

4.5. Phase 3: Check Sample Wedge Closure.

4.5.1. Phase 3a: Gather Sample Wedge Closure Hashes. Phase 3a (op-
tional) assembles a list of all the unique edge hashes from the sample wedges
file and stores it as a Java Set object. We denote this wedge hashes object by
ξ = {h1, h2, . . . }. This is very similar to the procedure in Phase 2b, which assembles
the list of wedge centers. We set ξ = ∅ if Phase 3a is skipped.

4.5.2. Phase 3b: Check Sample Wedge Closure. Phase 3b is the last major
step and checks the wedge closures, as shown in Alg. 5. The inputs are the sample
wedges file created by Phase 2c and the original edge list file. We also pass the
optional wedge hashes object (ξ) as a configuration parameter. If ξ is nonempty, it
is used to filter the edges passed forward to the reduce function. (Note that we could
skip Phase 3a and forward every edge forward to the reducers, but this would result
in much greater data shuffling in Phase 3b.) Note that more than one edge may hash
to the same value; hence, we loop through all edges that arrive at the reducer to verify
that there is a match before declaring a wedge as closed. Likewise, more than one
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Algorithm 4 Create Sample Wedges (Phase 2c)

parameters: τ, ω . Binning parameters
parameter: k . Desired number of samples per bin
parameter: γ . Represents wedge centers object

method Map(v, d, q, p) . Input is wedge centers file
Emit(v:0, (d, q, p)) . Note secondary sort key

method Map(v, w) . Input is edge list file
EdgeHelper(v, w)
EdgeHelper(w, v)

method EdgeHelper(v, w)
b← γ(v) . Extract bin ID
if b = 0 then . Phase 2b was skipped

φ← 1 . Always emit the edge
else if b = 1 then . Vertex is not a wedge center

φ← 0 . Never emit the edge
else . Vertex is a wedge center

dmin = BinLoDeg(b, τ, ω) . Lower bound degree of v
φ← 2 · (2k/dmin) . Proportion of edges to emit for v

end if
x← Rand([0, 1]) . Uniform random number in [0, 1]
if x ≤ φ then . Probabilisticly downselect

y ← Rand({ 1, . . . , maxlongint }) . Random long integer
Emit(v:y, w) . Note secondary sort key

end if

method Reduce(v, {x1, x2, . . . })
if x1 is a wedge center then . If it exists, the wedge center information is first

(d, q, p)← x1 . Unpack wedge center information
(d′, { (i`, j`) }q`=1})← Sampling(d, q) . Determine sample wedges
{w1, . . . , wd′ } ← {x2, x3, . . . , xd′+1 } . Read only d′ neighbors
for each ` = 1, . . . , q do

h← Hash(wiq , wjq ) . Hash of edge that would close this wedge
Emit(h, v, wiq , wjq , p, d) . Output is sample wedges file

end for
end if

method Sampling(d, q) . Subroutine for simulated sampling
for each ` = 1, . . . , q do . Generate endpoints for each wedge

i` ← Rand { 1, . . . , d }
j` ← Rand { 1, . . . , d } \ { i` }

end for
S ← { i1, . . . , iq } ∪ { j1, . . . , jq } . Gather unique indices (duplicates removed)
d′ ← |S| . Number of edges needed
Define mapping π : S → { 1, . . . , d′ } . Renumber from 1 to d′

return d′ and pairs { (π(i`), π(j`)) }q`=1}



16 T. G. Kolda, A. Pinar, T. Plantenga, C. Seshadhri, and C. Task

Algorithm 5 Check Sample Wedge Closure (Phase 3b)

parameter: ξ = {h1, h2, . . . } . Represents wedge hashes object

method Map(h, v0, v1, v2, p, d0) . Input is sample wedges file
Emit(h, (v0, v1, v2, p, d0))

method Map((w1, w2)) . Input is edge list file
h← Hash(w1, w2) . Hash of edge
if (ξ = ∅) or (h ∈ ξ) then

Emit(h, (w1, w2))
end if

method Reduce(h, {x1, x2, . . . })
Sort the values {x1, x2, . . . } into E (edges) and W (wedges)
for each w ∈ W do

(v0, v1, v2, p, d0)← w . Unpack wedge data
σ ← “open” . By default, wedges are open
for each e ∈ E do

(w1, w2)← e . Unpack edge data
if (w1 = v1 and w2 = v2) or (w2 = v1 and w1 = v2) then

σ ← “closed”
end if

end for
Emit(σ, v0, v1, v2, p, d0) . Output is results file (ver. 0)

end for

wedge may be closed by a single edge. The output of this phase is the results file
(ver. 0); each entry is of the form (σ, v0, v1, v2, p, d0) where σ indicates if the wedge
is open or closed and everything else is the same as for the sample wedges file.

4.6. Phase 4: Post-processing.

4.6.1. Phases 4a & 4b: Find degrees of wedge endpoints. Phases 4a & 4b
augment each sample wedge with the degrees of v1 and v2. This information is needed
for estimating the number of triangles per bin. If only the clustering coefficients are
required, these two steps can be omitted. Alg. 6 shows Phase 4a; the procedure for
Phase 4b is analogous and so is omitted. The final output of Phase 4b is the results
file (ver. 2); each line is of the form (σ, v1, vo, v2, p, d0, d1, d2) where d1 and d2 are
the degrees of vertices v1 and v2, respectively, while the remainder is the same as for
the results file (ver. 0).

4.6.2. Phase 4c: Summarize Results. Phase 4c tallies the final results per
bin, using the logic in Alg. 7. Its output is the summary file. Each line is of the
form b, q0, q1, q2, q3, c, p, t where b is the bin ID, q0 is the number of open wedges, qi is
the number of closed wedges with i vertices in the bin, c is the clustering coefficient
estimate, p is the number of wedges in the bin, and t is the estimated number of
triangles with one or more vertices in the bin.

We can estimate the global clustering coefficient from the degree-binned clustering
coefficients as follows. Let ĉb and pb be the clustering coefficient estimate and total
number of wedges for bin b. Let p =

∑
b pb be the total number of wedges. Then the

estimates for the global clustering coefficient and total number of triangles are given
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Algorithm 6 Find Degree of First Vertex per Wedge (Phase 4a)

method Map(σ, v0, v1, v2, p, d0) . Input is results file (ver. 0)
Emit(v1:1, (σ, v0, v1, v2, p, d0))

method Map(v, d) . Input is vertex degree file
Emit(v:0, d)

method Reduce(v, {x1, x2, . . . }) . Add the degree of v1 for each wedge.
d1 ← x1 . First value is the degree of the vertex
for each x ∈ {x2, x3 . . . } do . Remaining values, if any, comprise sample wedges

Emit(x, d1) . Output is results file (ver. 1)
end for

Algorithm 7 Summarize Results (Phase 4c)

parameters: τ, ω . Binning parameters

method Map(σ, v0, v1, v2, p, d0, d1, d2) . Input is results file (ver. 2)
b0 ← BinId(d0, τ, ω)
b1 ← BinId(d1, τ, ω)
b2 ← BinId(d2, τ, ω)
Emit(b, (σ, p, b1, b2))

method Reduce(b, {x1, x2, . . . })
p0, p1, p2, p3 ← 0
for each x ∈ {x1, x2 . . . } do

(σ, p, b1, b2)← x . Unpack value
if σ = “open” then

q0 ← q0 + 1
else

i← 1 + (b = b1) + (b = b2)
qi ← qi + 1

end if
end for
c← (q1 + q2 + q3)/(q0 + q1 + q2 + q3)
t← p · (q1 + q2/2 + q3/3)/(q0 + q1 + q2 + q3)
Emit(b, q0, q1, q2, q3, c, p, t) . Output is summary file

by

ĉ ≈
∑
b

pb
p
· ĉb, and t̂ = ĉ · p

3
. (4.3)

Let bmax denote the total number of bins. We assume that every bin has k samples
producing an error bound of ε with confidence (1− δ). Then we argue that |c− ĉ| ≤ ε
with confidence (1− bmax · δ).

5. Experimental Results.

5.1. Data Description. We obtained real-world graphs from the Laboratory for
Web Algorithms (http://law.di.unimi.it/datasets.php), which were compressed
using LLP and WebGraph [9, 7]. We selected ten larger graphs for which the complete

http://law.di.unimi.it/datasets.php
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edge lists were available. We also consider three artificially-generated graphs according
to the Graph500 benchmark [55], which uses Stochastic Kronecker Graphs (SKG) [28]
for its graph generator with [0.57,0.19;0.19,0.05] as the 2 × 2 generator matrix. We
have added noise with a parameter of 0.1, as proposed in [42, 43] to avoid oscillatory
degree distributions. These graphs are generated in MapReduce. All networks are
treated as undirected for our study; in other words, if x→ y, y → x, or both, we say
that edge (x, y) exists. Briefly, the networks are described as follows.

• amazon-2008 [9, 7]: A graph describing similarity among books as reported
by the Amazon store.

• ljournal-2008 [12, 9, 7]: Nodes represent users on LiveJournal. Node x con-
nects to node y if x registered y as a friend.

• hollywood-2009, hollywood-2011 [9, 7]: This is a graph of actors. Two actors
are joined by an edge whenever they appear in a movie together.

• twitter-2010 [25, 9, 7]: Nodes are Twitter users, and node x links to node y
if y follows x.

• it-2004 [9, 7]: Links between web pages on the .it domain, provided by IIT.
• uk-2005-05, uk-2006-06, uk-union-2006-06-2007-05 (shorted to uk-union) [8,

9, 7]: Links between web pages on the .uk domain. (We ignore the time
labeling on the links in the last graph.)

• sk-2005 [6, 9, 7]: Links between web pages on the .sk domain.
• graph500-23, graph500-26, graph500-29 [55, 28, 42, 37]: Artificially generated

graphs according to the Graph500 benchmark using the SKG method. The
number (23, 26, 29) indicates the number of levels of recursion and the size
of the graph.

The properties of the networks are summarized in Tab. 5.1; specifically, we report the
number of vertices, the number of undirected edges, the total number of wedges, and
estimates for the total number of triangles and the global clustering coefficients, cal-
culated according to (4.3). (To the best of our knowledge, we are the only group that
has calculated the last three columns, so these numbers have not been independently
validated.)

ID Graph Name Nodes Edges Wedges Triangles GCC
(millions) (millions) (millions) (millions)

1 amazon-2008 1 4 51 4 0.2603
2 ljournal-2008 5 50 9,960 408 0.1228
3 hollywood-2009 1 56 47,645 4,907 0.3090
4 hollywood-2011 2 114 120,899 7,097 0.1761
5 graph500-23 5 128 567,218 3,673 0.0194
6 it-2004 41 1,027 16,163,308 48,788 0.0091
7 graph500-26 34 1,054 9,087,164 28,186 0.0093
8 twitter-2010 42 1,203 123,435,590 34,495 0.0008
9 uk-2006-06 80 2,251 16,802,569 186,453 0.0333
10 sk-2005 43 2,543 5,196,166,169 256,556 0.0001
11 uk-2006-05 77 2,636 167,591,218 363,111 0.0065
12 uk-union 132 4,663 203,567,548 447,133 0.0066
13 graph500-29 240 8,502 158,727,767 272,931 0.0052

Table 5.1: Network characteristics. All edges are treated as undirected. The triangle counts
and global clustering coefficients (GCC) are our estimates.
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Fig. 5.1: Runtimes broken down by phases

5.2. Experimental Setup. We have conducted our experiments on a Hadoop
cluster with 32 compute nodes. Each compute node has an Intel i7 930 CPU at
2.8GHz (4 physical cores, HyperThreading enabled), 12 GB of memory, and 4 2TB
SATA disks. All experiments were run using Hadoop Version 0.20.203.0. Unless
otherwise stated, all experiments use the following parameters:

• Number of samples per bin: k = 10, 000
• Bin parameters: τ = 2 and ω = 2 (i.e., bins are { 2 } , { 3, 4 } , { 5, 6, 7, 8 } , . . . .)
• Number of reducers: 64

5.3. Experimental Results and Timings. We ran our MapReduce code on
the 13 networks described in §5.1. The runtimes are reported in Fig. 5.1, broken
down by the phases of the algorithm. The largest real-world graph, uk-union (#12)
with over 100 million vertices and over 4.6 billion edges, took less than 30 minutes
to analyze. For all the networks, the most expensive step is Phase 1a, calculating
the degree per node, because every edge in the edge list file generates two key-
value pairs. For uk-union, this step takes over 12 minutes. Phases 1b and 2a are
essentially constant time (approximately 30 seconds) because they process only the
vertex degree file. Phase 2c (Create Sample Wedges) is the next most expensive
step. Here we collect the edges adjacent to wedge centers, reading the entire edge list
file again in the map phase; however, the wedge centers file created in Phase 2b
minimizes the number of edges that are passed on to reducers. Nevertheless, for the
wedge centers that are high degree, many edges are transmitted (though substantially
less than the entire edge list). Phase 3b (Check Sample Wedge Closure) is the next
most expensive, again reading the entire edge list file. The last few postprocessing
steps are close to constant time (approximately 30-60 seconds each).
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Fig. 5.2: Correlation of the runtime to the number of edges. There is a constant cost of 225
sec., which accounts for the MapReduce overhead and then an incremental cost of 0.33 sec.
per million edges.

In an enumeration approach, we expect the runtimes to be proportional to the
number of wedges. In that case, the sk-2005 (#10) would be the most expensive by
an order of magnitude. For our method, however, the runtime is proportional to the
number of edges. Fig. 5.2 shows that there is a near-linear relationship between the
number of edges and the runtime. The x-axis is the number of edges (in millions)
and the y-axis is the runtime. All 13 examples are included. We see that there is a
constant cost of 225 sec., which accounts for the MapReduce overhead and then an
incremental cost of 0.33 sec. per million edges.

Comparisons to Other Methods. As one point of comparison, we ran Plantenga’s
implementation that fully enumerates triangles [38] on several smaller graphs. The
results are summarized in Tab. 5.2. This implementation is efficient because it only

Id Graph Name Wedges Run Time Exact Sampling Sampling
Checked (sec.) GCC Error Speed-up

1 amazon-2008 25% 158 0.2603 0.0001 1
2 ljournal-2008 19% 3,385 0.1228 0.0010 11
3 hollywood-2009 29% 21,665 0.3090 0.0006 72
4 hollywood-2011 27% 90,598 0.1761 0.0006 293

Table 5.2: Comparison of sampling and exact enumeration.

checks wedges where the center degree is smallest, i.e., (u, v, w) such that dv ≤ du
and dv ≤ dw. This means that only one wedge per triangle is checked and moreover
that many open wedges centered at high-degree nodes are ignored. The table lists
the percentage of wedges that are checked for closure. The run times range from
3 min. for the smallest graph, up to 25 hrs. for hollywood-2011 (2M nodes, 114M
edges). Because this code enumerates every triangle, we can calculate the exact global
clustering coefficient (GCC). The error from our sampling method is also reported. At
a confidence level of 99.9%, using k = 2000 samples yields an error of ε = 0.05. The
true errors are one to two orders of magnitude less than this worse case probabilistic
bound. Finally, we observe the main advantage of sampling in terms of the observed
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speed-up, up to 293X for hollywood-2011. Larger graphs cannot be completed in a
reasonable amount of time on our cluster. As previously noted, Suri and Vassilvitskii
[44] have another enumeration method that was able to process the twitter-2010 data
set in 483m on a 1636-node Hadoop cluster.

The other method class of methods for comparison are edge-sampling methods
such as Doulion [48]. The basic idea is to sample a subset of edges and then run a
triangle counting method (such as enumeration) on the reduced graph. Edge sam-
pling has been compared to wedge sampling in serial [43]. Keeping 1 in 25 edges
produces results that are roughly comparable to wedge sampling in time but with
much greater variance in the GCC estimate. Keeping fewer edges yields savings in
time but at the expense of much greater variance. Hence, we have not compared
parallel implementations.

Impact of Implementation Features. We have considered many alternatives during
the implementation of the wedge sampling algorithm, and in this subsection we present
the impact of two implementation features. The three versions of the code we compare
are: (1) Original algorithm. (2) Skip Phase 2b. (3) Skip Phase 3a. We show results
for uk-union in Fig. 5.3. Skipping Phase 2b means that every edge generates two
messages in Phase 2c, increasing the time in that phase from 372 sec. to 1235 sec. (3X
increase), twice as expensive as Phase 1a. Skipping Phase 3a means that every edge
generates one message in Phase 3b, increasing the time in that phase from 207 sec.
to 543 sec. (2.5X increase). Hence, taking measures to reduce the data that must be
shuffled to the reducers has major pay-offs in terms of performance.
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Fig. 5.3: Timings for variations. The variations are (1) Original algorithm, (2) Skip Phase
2b, (3) Skip Phase 3a.

5.4. Degree Distribution. The output of Phase 1b yields the (binned) degree
distribution. We show results for 12 networks in Fig. 5.4 (we omit uk-2006-05 because
it is very similar to uk-2006-06). For each data point, the x-coordinate is the minimum
degree of the bin, and the y-coordinate is the total number of vertices in that bin.

The degree distributions all so something that can be roughly characterized as
heavy-tailed. None of the real-world graphs are particularly smooth in the degree
distribution, and some have odd spikes, especially in the tails (e.g., sk-2005, it-2004,
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Fig. 5.4: Degree distributions by bin

uk-union). The artificial graphs (graph500-23/26/29) are extremely smooth; we know
from analysis that the noisy version of Graph500 yields lognormal tails [42, 43].

5.5. Clustering Coefficients. We compute the clustering coefficients for each
bin. These are displayed in Fig. 5.5. Here the x-coordinate is the minimum degree
in the bin, and the y-coordinate is the average clustering coefficient for wedges with
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centers in that bin.

Social networks are well-known to have not only high clustering coefficients, but
also clustering coefficients that tend to degrade as the degree increases. This can be
seen in the following graphs: amazon-2008, ljournal-2008, hollywood-2009, hollywood-
2011. The twitter-2010 graph is not as “social” in terms of clustering coefficient.

The web graphs (it-2004, uk-2006-06, uk-union, sk-2005) are interesting because
the clustering coefficients seems to start low, increase, and then drop off very quickly.
This may be due to the design of web sites with many interconnected pages or to
some artifact of the crawling process.

The Graph500 examples have overall low clustering coefficients and do not seem
to behave like the real-world graphs. The closest match is the twitter-2010 graph.

5.6. Triangles. We also measure the number of triangles per bin in Fig. 5.6.
Here the x-coordinate is the minimum degree in the bin, and the y-coordinate is the
proportion of triangles that have at least one vertex in that bin. Triangles may be
counted more than once if they have different vertices in different bins.

It is interesting to observe where triangles come from. Even though low-degree
nodes are the most plentiful, most of the triangles come from higher-degree. We can
roughly sort the graphs into three categories.

There is only one graph where the triangles come from relatively low-degree ver-
tices: amazon-2008. Here it seems that most triangles come from nodes with degrees
between 4 and 80.

There are several graphs where the triangles come from the mid-range degrees:
one social graph (ljournal-2008) and all the web graphs (it-2004, sk-2005, uk-2006-06,
uk-union). The “double-spike” behavior of sk-2005 is interesting.

Finally, there are a few graphs where the vast majority of triangles involve the
high-degree nodes. Both Hollywood graphs are of this type; note that 60% of the
triangles involve one of the nodes in the bin starting at degree 1025. The Graph500
graphs also have most of the triangles coming from the highest degree nodes.

5.7. Triangle Statistics. An interesting feature of our wedge sampling tech-
niques is that, in the case of a single bin, all the closed triangles are uniformly ran-
domly sampled as well. Such a random sample can be used to analyze the character-
istics of the triangles in the graph, going further than merely looking at their count.
Examples of such studies can be found in [17], where full enumeration of the triangles
was used. To avoid the burden of full enumeration a uniform sampling of the triangles
can be used, as we showcase below.

For four example graphs, we ran our MapReduce code with a single bin (τ = 1
and ω = 107) and k = 5, 000, 000 samples; we skipped phases 2b and 3a to avoid any
data overflow problems in the configuration parameters. Runtimes and the number
of triangles (expected to be roughly k times the global clustering coefficient) are
reporting in Tab. 5.3.

Graph Name Time(s) Triangles
uk-union 2618 33398
hollywood-2011 348 878719
graph500-26 845 46047
graph500-29 5487 25994

Table 5.3: Number of triangles from 5,000,000 wedge samples.
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Fig. 5.5: Clustering coefficients by bin

Using these sampled triangles, we can look at the degrees of the vertices. Each
triangle has a minimum, middle, and maximum degree. We analyze the degree as-
sortativity of the vertices of the triangles by comparing the minimum and maximum
degrees in Fig. 5.7. Specifically, we assign each vertex to a degree bin, using (4.2) with
τ = 2 and ω = 2. We group all triangles with the same minimum degree bin together.
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Fig. 5.6: Proportion of triangles in each bin

The box plot shows the statistics of the bin for the maximum degree: the central
mark (red) is the median max-degree, while the edges of the (blue) box are the 25th
and 75th percentiles. The whiskers extend to the most extreme points considered not
to be outliers, and the outliers (red plus marks) are plotted individually.

Observe that the social network, hollywood-2011, shows an assortative relation
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between the maximum and minimum for the hollywood graph, since the two quantities
rise gradually together. For the uk-union web graph on the other hand, the average
maximum degree is essentially invariant to the minimum degree. These findings are
consistent with the results in [17] about networks with high global clustering coeffi-
cients having degree assortative triangles, while this assortativity cannot be observed
in networks with low clustering coefficients. Here, we were able to observe the same
trend on these massive graphs using sampling in a much more efficient way, avoiding
the enumeration burden. We see that the Graph500 networks also have almost no
assortativity between the minimum and maximum degrees and therefore do not have
the characteristics of a social network.
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Fig. 5.7: Triangle Degree Assortativity

6. Conclusions. We have shown that wedge-based sampling can be scaled to
massive graphs in the MapReduce framework. On a relatively small MapReduce
cluster (32 nodes), we have analyzed graphs with up to 240M edges, 8.5B edges,
5.2T wedges, and 447B triangles. Even the largest graph was analyzed in less than
one hour, and most only took a few minutes. Fig. 6.1 shows a timing analysis of the
MapReduce tasks [53] for Phase 1a on the uk-union graph. Mapper tasks run in waves
of 128 parallel jobs, equal to the number of mapper slots available on the cluster. Note
that a larger cluster would be able to run more Map tasks in parallel, decreasing the
overall runtime. To the best of our knowledge, these are the largest triangle-based
calculations performed to date.

Unlike enumeration techniques that need to at least validate every triangle and
more often have cost proportional to the number of wedges, our method is linear in
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Fig. 6.1: Task breakdown for Phase 1a on uk-union on 32 Hadoop nodes.

the number of edges. The most expensive component of the wedge-based sampling is
finding the degree of each vertex (Phase 1a); reducing the time for this is a topic for
future study. On our cluster, the time is approximately 0.33 sec. per million edges,
plus a fixed cost of 225 sec. for overhead. Because we are using MapReduce, we never
need to fit the entire graph into memory — we only need to be able to stream through
all the edges.

Our MapReduce implementation requires a total of eight MapReduce jobs, three
of which do most of the work because they read the entire edge list (Phases 1a, 2c, and
3b) and two of which are optional (Phases 4a and 4b, which are labeling the degrees
of the sampled triangles). We have striven to minimize the data being shuffled in each
phase by using special data structures to filter the edges.

Using our code, we are able to compute the degree distribution, approximate the
binned degree-wise clustering coefficient and the number of triangles per bin. Addi-
tionally, we can analyze the characteristics of the triangles (e.g. degree assortativity).
As part of our analysis, we have analyzed the graphs used in the Graph500 supercom-
puter benchmark. We are able to give a more detailed understanding of the empirical
properties of the generator and compare it to real-world data; this is potentially very
helpful in determining if performance on the benchmark data is indicative of expected
performance on real-world data.
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